传统上,无监督的情感分析是通过计算存储在情感词典中的文本中的这些词,然后根据注册正面和否定词的比例分配标签的文字来执行的。尽管这些“计数”方法被认为是有益的,因为它们确定性地对文本进行评分,但当分析的文本简短或词汇与词典认为默认值的情况不同时,它们的分类率降低。本文提出的称为LEX2SENT的模型是一种无监督的情感分析方法,用于改善情感词典方法的分类。为此,对DOC2VEC模型进行了训练,以确定嵌入文档嵌入与情感词典正面和负部分的嵌入之间的距离。然后对这些距离进行评估,以在重新采样文档上多次执行DOC2VEC,并进行平均以执行分类任务。对于本文考虑的三个基准数据集,拟议的LEX2SENT优于每个评估的词典,包括Vader等最先进的词典或分类率的意见词典。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer's expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
translated by 谷歌翻译
Continual Learning, also known as Lifelong or Incremental Learning, has recently gained renewed interest among the Artificial Intelligence research community. Recent research efforts have quickly led to the design of novel algorithms able to reduce the impact of the catastrophic forgetting phenomenon in deep neural networks. Due to this surge of interest in the field, many competitions have been held in recent years, as they are an excellent opportunity to stimulate research in promising directions. This paper summarizes the ideas, design choices, rules, and results of the challenge held at the 3rd Continual Learning in Computer Vision (CLVision) Workshop at CVPR 2022. The focus of this competition is the complex continual object detection task, which is still underexplored in literature compared to classification tasks. The challenge is based on the challenge version of the novel EgoObjects dataset, a large-scale egocentric object dataset explicitly designed to benchmark continual learning algorithms for egocentric category-/instance-level object understanding, which covers more than 1k unique main objects and 250+ categories in around 100k video frames.
translated by 谷歌翻译
The deep learning revolution has greatly been accelerated by the 'hardware lottery': Recent advances in modern hardware accelerators and compilers paved the way for large-scale batch gradient optimization. Evolutionary optimization, on the other hand, has mainly relied on CPU-parallelism, e.g. using Dask scheduling and distributed multi-host infrastructure. Here we argue that also modern evolutionary computation can significantly benefit from the massive computational throughput provided by GPUs and TPUs. In order to better harness these resources and to enable the next generation of black-box optimization algorithms, we release evosax: A JAX-based library of evolution strategies which allows researchers to leverage powerful function transformations such as just-in-time compilation, automatic vectorization and hardware parallelization. evosax implements 30 evolutionary optimization algorithms including finite-difference-based, estimation-of-distribution evolution strategies and various genetic algorithms. Every single algorithm can directly be executed on hardware accelerators and automatically vectorized or parallelized across devices using a single line of code. It is designed in a modular fashion and allows for flexible usage via a simple ask-evaluate-tell API. We thereby hope to facilitate a new wave of scalable evolutionary optimization algorithms.
translated by 谷歌翻译
体现的代理需要能够在自然语言中互动理解任务描述,并提出适当的后续问题以获取必要的信息,以有效地成功完成各种用户的任务。在这项工作中,我们提出了一组对话框,用于建模此类对话框,并注释教学数据集,其中包括3,000多个位置,以任务为导向的对话(总计包含39.5k个话语),并具有对话框ACT。 Teach-da是对Dialog ACT的第一个大型数据集注释,用于具体任务完成。此外,我们在培训模型中证明了该注释的数据集在标记给定话语的对话框行为中的使用,预测给定对话框历史记录的下一个响应的对话框行为,并使用对话框行为指导代理商的非第二语言行为。特别是,我们对对话记录任务的教学执行执行的实验,该模型预测在体现任务完成环境中要执行的低级操作的顺序,证明对话框行为可以将最终任务成功提高2分,以提高最终任务成功率到没有对话行为的系统。
translated by 谷歌翻译
我们设计了一种算法,用于查找具有强大理论保证其性能的反事实算法。对于任何单调模型$ f:x^d \ to \ {0,1 \} $和instance $ x^\ star $,我们的算法make \ [{s(f))} \ cdot \ log d} \]查询到$ f $并返回{哪个$ f(x')\ ne f(x^\ star)$。这里$ s(f)$是$ f $的灵敏度,lipschitz常数的分散类似物,$ \ delta_f(x^\ star)$是从$ x^\ star $到其最近的反事实的距离。以前最著名的查询复杂性是$ d^{\,o(\ delta_f(x^\ star))} $,可以通过Brute-Force Local Search实现。我们进一步证明了$ s(f)^{\ omega(\ delta_f(x^\ star))} + \ omega(\ log d)$的下限我们的算法本质上是最佳的。
translated by 谷歌翻译
作者最近给出了$ n^{o(\ log \ log n)} $时间成员资格查询算法,用于在统一分布下正确学习决策树(Blanc等,2021)。此问题的先前最快算法以$ n^{o(\ log n)} $ time运行,这是Ehrenfeucht和Haussler(1989)的经典算法,这是无分配设置的经典算法。在本文中,我们强调了获得多项式时间算法的自然开放问题,讨论获得它的可能途径以及我们认为具有独立利益的状态中级里程碑。
translated by 谷歌翻译
深神经网络实施了一系列逐层操作,每个操作都相对容易理解,但是总的总体计算通常很难理解。我们开发了一个简单的想法,可以解释有用表示的逐层结构:每一层的作用是重新格式化信息以减少目标输出的“距离”。我们通过利用最近的指标代表性相似性的工作来形式化“距离”的直观概念,并展示它如何导致几何概念的丰富空间。通过此框架,深度神经网络实施的层计算可以被视为高维表示空间中的路径。我们开发工具以在距离,角度和大地学方面表征这些几何形状。然后,我们提出在CIFAR-10训练的残留网络的三组问题:(1)路径的直线程度如何,以及每层对目标有何贡献? (2)这些特性如何在培训上出现? (3)更广泛的网络与更深的网络采取的路径有多相似?我们通过勾勒出其他方式来结论,这种代表性几何形状可用于理解和解释网络培训,或者规定改善网络体系结构以适合任务。
translated by 谷歌翻译
使用增强的框架,我们证明所有基于杂质的决策树学习算法(包括经典的ID3,C4.5和CART)都具有很高的噪音耐受性。我们的保证在讨厌的噪声的最强噪声模型下保持,我们在允许的噪声速率上提供了近乎匹配的上和下限。我们进一步表明,这些算法简单,长期以来一直是日常机器学习的核心,在嘈杂的环境中享受可证明的保证,这些环境是由关于决策树学习的理论文献中现有算法无与伦比的。综上所述,我们的结果增加了一项持续的研究线,该研究旨在将这些实际决策树算法的经验成功放在牢固的理论基础上。
translated by 谷歌翻译